
Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Particle in cell simulations on GPU clusters

Francesco Rossi 1

1University of Bologna and INFN, LOASIS affiliate for the summer

AFRD Meeting, May 21st, 2013

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Table of Contents

1 Introduction to GPUs

2 GPU PIC current deposition algorithm

3 Multi GPU parallelization

4 Benchmarks and simulations

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Simulations for laser plasma acceleration

Particle in cell (PIC) simulations are useful tools for designing and

optimizing laser-driven, plasma-based accelerators.

Such simulations may require a huge amount of computation (& 105

CPU hours).

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

GPU Particle in cell codes

1 Viktor K. Decyk and Tajendra V. Singh ,"Adaptable Particle-in-Cell algorithms for graphical
processing units," Computer Physics Communications 182, 641 (2011).

2 Burau,Widera,Hönig,Juckeland,Debus,Kluge,Schramm,Cowan,Sauerbrey,Bussmann.
“PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster,” IEEE Transactions
on Plasma Science 38(10)

3 Kong,Huang,Ren,Decyk. “Particle-in-cell simulations with charge-conserving current
deposition on graphic processing units.” J.Comput.Phys.230,4(February2011)

4 Madduri, Kamesh and Ibrahim, Khaled Z. and Williams, Samuel and Im, Eun-Jin and Ethier,
Stephane and Shalf, John and Oliker, Leonid “Gyrokinetic toroidal simulations on leading
multi- and manycore HPC systems” Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Motivation: why a GPU PIC code?

2012
Run simulations we need to run today

on the most efficient parallel

architectures available (GPUs) for PICs

Performance exploiting exposed

parallelism

Efficiency from data locality

2016
Path to exascale computing era !
dominated by manycore architectures

Prepare PIC algorithms for
massively-manycore
shared-memory node systems
Bigger subdomains !
fundamental for scalability/load
balancing

GPUs roadmap promises 200%
performance increase every year and
a half (next generation out this fall)

Help to sustain the computational
demand in LPA community

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

The NVIDIA CUDA GPU architecture

On chip: ~15 Multiprocessors, each one:

256 KB register files
16-48 Kb manual cache: shared memory
Issuing instructions

executing “warps” of 32 threads in a
SIMD fashion
divergent branches in a warp cause
warp serialization

Hides latency keeping many thread warps
in flight

High-bandwidth memory bus (~200 Gb/s)
connecting to device RAM

Prefers ordered access within a warp
Cannot rely on cache: number of cache
bytes-per-thread is several orders of
magnitude lower than on CPUs

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

The latency / throughput dilemma

Memory Latency and Bandwidth are often limiting performance. Two different
strategies:

Single thread optimization
In scalar processors

Reduce latencies

Use large caches (per thread)

Predict branches

Throughput processors: GPUs
1 Provide high bandwidth/througputs

2 Saturate it: Tolerate latencies
processing many threads in parallel

3 Space/energy saved removing scalar
optimization used for having more
computational power

Similar considerations also apply for other instructions, not only memory accesses.

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Jasmine

“Jasmine”, a 3D GPU particle in cell code (PIC), featuring:

Second order explicit PIC algorithm (FDTD + Boris Pusher) in double
precision
High order particles shape functions
Charge conserving simulations using Esirkepov shape factors
3D multi-GPU simulations with high scalability
Dynamic load balancing
Moving window
Particle trajectory tracking
Simulation restart & asynchronous I/O
Integrated with a radiation generation computation code

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Table of Contents

1 Introduction to GPUs

2 GPU PIC current deposition algorithm

3 Multi GPU parallelization

4 Benchmarks and simulations

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Particle in cell method, algorithmically

EM PIC: Maxwell+Lorentz+(Vlasov sampling)

Particle-grid interactions:

Force on particles is interpoladed (averaging) from fields grids

Particle current/density is deposited to grid

scatter operation: a particle adds its density value the cells that it overlaps

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

PIC Deposition algorithm on massively parallel architectures

1 Naive, (1 particle ! 1 thread) parallelization! Race conditions on

same memory cells: wrong results

Atomic operations or other synchronization methods are required

2 N particles per cell, particle shape function of total order K (4~27)

Density grid data is accessed K · Nppc times
It’s worth caching in GPU multiprocessor’s shared memory

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Caching using shared memory

Many accesses to same memory location!worth caching

Density grid data is accessed 2 ⇤ K ⇤ Nppc times

Particles organized by grid block and then grid cell

One block processes particles having center inside the grid block
Grid block cells + halo (~ half the order of shape function)

Cache electrical current grid block in multiprocessor’s shared memory

Saves ~Nppc ⇥ K global memory traffic

Use segmented reduction for sums in shared memory

Rather than shared memory atomic operations

Not natively available for double precision
Can be slower than reduction

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Deposition algorithm without atomics

Algorithm

- Sort by cell block and cell

- Assign a CUDA block to a cell

block

- Perform a per-block, shared

memory, segmented scan to

compute density sum for each cell

- Sum cached copy to global grid

Scans:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Implementation of Esirkepov’s method for charge conservation

Can be implemented with no branches (ideal for GPUs):

large overhead: involves many more grid point per particle
e.g. for 3D quadratic shape function,5x5x5 = 125 instead of3x3x3

With branches:
If no particle grid cell crossing ! no overhead
If particle crossing in one direction ! little overhead
3D possible cases to choose from!

But:

Intra-warp divergent branches are serialized by multiprocessors
Ideally, one would assign particles moving up,down,right to different warps

Lots of extra synchronization required

There could be not enough particles moving to a particular direction to saturate a warp (3D

cases)

Quick Fix for explicit simulations with grid stretching (transverse cell. dim � 4 ):

In this case only a few particles cross transverse cell boundaries
Static branch: divide particle crossing transversally / not transversally
Optimal branch: most of the particles are not crossing cells transversally

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Performance

LASER: a=7.7, waist=9.0 mum, fwhm=24.0 fs PLASMA: density=1.00e+19 1/cm^3. Simulation run
for ct = 60µm , double precision. Note: 3D test with Esirkepov method runs stretched grid
optimization while 2D Esirkepov runs without it.Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Grid-based Esirkepov implementation

Deposit ⇢n+1 and compute Jn+ 1
2

n+ 1
2
, using ⇢n+1 . If particles’ shape is

separable ⇢̂ = ⇢̂x ⇢̂y ⇢̂z , the grid ⇢ variation per timestep can be

decomposed into movement along axes:

[⇢n+1 � ⇢n] +�t DJn+ 1
2 ! �t D{x,y,z}J{x,y,z} = ��⇢{x,y,z}

Pros:
Almost same cost of a standard, 3 components, current deposition
Simpler
Extendible to high order schemes (in 2nd order FDTD the spatial operators
D{x,y,z} are solvable via a simple integral.

Cons:
Auxillary buffer ⇢n must be allocated

Details in Londrillo et al. “Charge preserving high order PIC schemes”,

NIMA 620-1, Aug 2010
Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Performance gain

Jasmine vs ALaDyn (our CPU code), same exact simulation.

Performance of a single NVIDIA Fermi GPU equates ~200x BlueGene

cores or ~45x IBM SP6 cores.

Plus, since subdomains are much larger, load balancing and scalability are
much easier

In the simulation setups shown above (fair resolution), jasmine can

simulate ~4mm of plasma per day on a ~24 GPUs cluster

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Table of Contents

1 Introduction to GPUs

2 GPU PIC current deposition algorithm

3 Multi GPU parallelization

4 Benchmarks and simulations

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Scaling to multiple GPUs: Hiding network transfer

Exchange:

1 Fields’ halos
2 Particles leaving subdomain

Cluster nodes communicate using standard MPI

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Scaling to multiple GPUs: Hiding network transfer

Exchange:

1 Fields’ halos
2 Particles leaving subdomain

Cluster nodes communicate using standard MPI

Transfer particles concurrently with current deposition.

Communication can be hidden almost completely.

Scalability test: warm plasma simulation on INFN APE cluster @ “ULa Sapienza”
and PLX machine @ CINECA

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Scaling

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Simple algorithm for load balancing

The particle motion easily leads to inhomogeneous distribution of the

load

Shrink the volume of heavy-loaded nodes:

Each few timesteps select a subdomain (and its row) and the direction
where to shrink
Subdomains topology remains intact (vertices conservation)
Choice is done trying to minimize the cost function:

k1 ⇥ Max(Load)/Average(Load) + k2 ⇥ Variance(Load)/Average(Load)

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Load balancer test case

Setup (coarse test)
LASER: a=5.8, waist=13.2 mum,

fwhm=24.0 fs

PLASMA: density=3.80e+18 1/cm^3

GRID: n=[729, 96, 96], dx=[’6.25e-02’,

’5.00e-01’, ’5.00e-01’] mum

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Test case: scaling with load balancing

With 72 subdomains:

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Memory intensive simulations

Total memory availability represents a constraint for many simulations (for
example ion acceleration ones).

In a node, GPU memory is often much less than the total host memory available
Using host memory to store simulation data make larger simulations possible on a
cluster of fixed size

Asynchronous stream of particle chunks stored in main CPU memory overlapped
with computation using CUDA streams

Slower but no longer memory bound to the GPU device memory
Currently in testing stage

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Implementation note: Meta-programming

Meta-programming can be used:

for writing maintainable code for all particle weighting / numerical schemes
tweak parameters for optimization of each case
implementing different numerical schemes using the same core algorithms
(deposition and intepolation)

Attempts:

1 C++ template meta-programming
2 Python-based code template engine (code becomes more linear, but non

standard)

Python also used for simulation initial conditions definition, plotting

(numpy+matplotlib) and basic automated data-analysis

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Meta-programming: examples

Particle deposition: unrolled loops in particle shape, warp scans and

compiler-computed shared memory offsets.

Preprocessing for scan integrals for grid-based Esirkepov method:

generic n-dimensional, memory access efficient, grid transpose kernel to

move the integration coordinate to the fastest index.

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Table of Contents

1 Introduction to GPUs

2 GPU PIC current deposition algorithm

3 Multi GPU parallelization

4 Benchmarks and simulations

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

LWFA benchmark simulation

Setup
LASER: a=2.0, waist=8.2 mum,

fwhm=21.0 fs

PLASMA: density=1.38e+19 1/cm^3

GRID: n=[512, 256, 256], dx=[’4.00e-02’,

’3.18e-01’, ’3.18e-01’] mum

Parameters from Paul et al. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield

Acceleration Simulations, AIP Conference Proceedings;1/22/2008

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

LWFA benchmark simulation

Setup
Parameters from Paul et al.
Benchmarking the codes VORPAL,

OSIRIS, and QuickPIC with Laser

Wakefield Acceleration Simulations,

AIP Conference
Proceedings;1/22/2008
LASER: a=4.0, waist=8.2 mum,

fwhm=21.0 fs

PLASMA: density=1.38e+19 1/cm^3

GRID: n=[512, 256, 256], dx=[’4.00e-02’,

’3.18e-01’, ’3.18e-01’] mum

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

SPARCLab electron acceleration simulation

Setup
LASER: a=4.9, waist=15.5 mum,

fwhm=30.0 fs

PLASMA: density=3.0e+18 1/cm^3

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

SPARCLab electron acceleration simulation

Setup
LASER: a=4.9, waist=15.5 mum,

fwhm=30.0 fs

PLASMA: density=3.0e+18 1/cm^3

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

TNSA ion acceleration: Frascati Flame parameters

Setup
LASER: a=7, waist=10.0 mum, fwhm=30.0 fs

TARGET: 2.0µm thick

Double layer: aluminium, (n/nc = 100) + back side contaminants layer

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

TNSA ion acceleration: Nara-like parameters

Setup
LASER: a=22, waist=3.5 mum, fwhm=40.0 fs

TARGET: 0.8µm thick

Double layer: aluminium (n/nc = 60) + back side contaminants layer

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

Future work

Performance tuning for Kepler architecture

Implement more accurate and/or optimized numerical schemes.

GPUs alone are not of enough for satisfying all the computational
requirements of the experimental groups (e.g. simulating a 10GeV electron
acceleration stage).

Lot of work to do!

Francesco Rossi Particle in cell simulations on GPU clusters



Introduction to GPUs GPU PIC current deposition algorithm Multi GPU parallelization Benchmarks and simulations Conclusions

References

1 F.Rossi et al., Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle

in cell code. AIP Conference Proceedings Vol. 1507 Issue 1, p184

2 Birdsall,Langdon. Plasma physics via computer simulation.

3 Benedetti,Sgattoni,Turchetti,Londrillo. ALaDyn: A High-Accuracy PIC Code for the Maxwell-Vlasov

Equations. IEEE Transactions on Plasma Science,36(4),2008.

4 Burau,Widera,Hönig,Juckeland,Debus,Kluge,Schramm,Cowan,Sauerbrey,Bussmann. PIConGPU: A Fully

Relativistic Particle-in-Cell Code for a GPU Cluster, IEEE Transactions on Plasma Science 38(10)

5 Abreu,Fonseca Pereira,Silva. PIC Codes in New Processors:A Full Relativistic PIC Code in CUDA-Enabled

Hardware With Direct Visualization.IEEE Transactions on Plasma Science,vol.39,issue 2

6 Kong,Huang,Ren,Decyk.Particle-in-cell simulations with charge-conserving current deposition on graphic

processing units. J.Comput.Phys.230,4(February2011)

7 Sengupta,Harris,Zhang,Owens.Scan primitives for GPU computing.In Graphics Hardware 2007, Aug.2007.

8 Hoberock,Bell.Thrust:A Parallel Template Library

Francesco Rossi Particle in cell simulations on GPU clusters


	Introduction to GPUs
	GPU PIC current deposition algorithm
	Multi GPU parallelization
	Benchmarks and simulations

